Chemistry 2

Lecture 1 Quantum Mechanics in Chemistry

Your lecturers

Room 316 asaph.widmer-cooper@sydney.edu.au

12pmAdam Bridgeman

Room 543A adam.bridgeman@sydney.edu.au

Revision – H₂⁺

- Near each nucleus, electron should behave as a 1s electron.
- At dissociation, 1s orbital will be exact solution at each nucleus

Revision – H₂⁺

 At equilibrium, we have to make the lowest energy possible using the 1s functions available

Revision – H₂⁺

Revision – H₂

Revision – He₂

2nd row homonuclear diatomics

Now what do we do? So many orbitals!

1s ——— 1s

Interacting orbitals

Orbitals can interact and combine to make new approximate solutions to the Schrödinger equation. There are two considerations:

- 1.Orbitals interact **inversely** proportionally to their **energy difference**. Orbitals of the same energy interact completely, yielding completely mixed linear combinations. In quantum mechanics, energy and frequency are related (E=hv). So, energy matching is equivalent to the phenomenon of **resonance**.
- 2. The extent of orbital mixing is given by the **resonance integral** β . We will show how beta is calculated in a later lecture.

Interacting orbitals

1. Orbitals interact proportionally to the inverse of their energy difference. Orbitals of the same energy interact completely, yielding completely mixed linear combinations.

(First year) MO diagram

Orbitals interact *most* with the corresponding orbital on the other atom to make perfectly mixed linear combinations. (we ignore core).

Molecular Orbital Theory - Revision

Molecular Orbital Theory - Revision

Can predict bond strengths qualitatively

diamagnetic

Interacting orbitals

1. The extent of orbital mixing is given by the integral

$$\beta$$
 = something

The 2s orbital on one atom *can* interact with the 2p from the other atom, but since they have different energies this is a smaller interaction than the 2s-2s interaction. We will deal with this later.

Interacting orbitals

1. The extent of orbital mixing is given by the integral

There is no net interaction between these orbitals.

The positive-positive term is cancelled by the positive-negative term

 σ orbitals can now interact

σ* orbitals can interact

$$2s\sigma$$

 π orbitals do not interact

$$2s\sigma$$

sp mixing

Smallest energy gap, and thus largest mixing between 2s and 2p is for Boron. Largest energy gap, and thus smallest mixing between 2s and 2p is for Fluorine.

sp mixing

Learning outcomes

- •Use the principle that the mixing between orbitals depends on the energy difference, and the resonance integral, β .
- •Apply the separation of σ and π bonding to describe electronic structure in simple organic molecules.
- •Rationalize differences in orbital energy levels of diatomic molecules in terms of s-p mixing.

Next lecture

- Particle in a box approximation
 - solving the Schrödinger equation.

Week 10 tutorials

Wavefunctions and the Schrödinger equation.

Practice Questions

- 1. Why is s-p mixing more important in Li₂ than in F₂?
- 2. How many core, σ -bonding, and π -electrons are there in
 - a) acetylene
 - b) ethylene
 - c) benzene
 - d) buckminsterfullerene

Check that your **total** number of electrons agrees with what is expected (6 per carbon, 1 per hydrogen).